Linear time algorithms for Abelian group isomorphism and related problems
نویسنده
چکیده
We consider the problem of determining if two finite groups are isomorphic. The groups are assumed to be represented by their multiplication tables. We present an O(n) algorithm that determines if two Abelian groups with n elements each are isomorphic. This improves upon the previous upper bound of O(n log n) [23] known for this problem. We solve a more general problem of computing the orders of all the elements of any group (not necessarily Abelian) of size n in O(n) time. Our algorithm for isomorphism testing of Abelian groups follows from this result. We use the property that our order finding algorithm works for any group to design a simple O(n) algorithm for testing whether a group of size n, described by its multiplication table, is nilpotent. We also give an O(n) algorithm for determining if a group of size n, described by its multiplication table, is Abelian.
منابع مشابه
On the Group and Color Isomorphism Problems
In this paper, we prove results on the relationship between the complexity of the group and color isomorphism problems. The difficulty of color isomorphism problems is known to be closely linked to the the composition factors of the permutation group involved. Previous works are primarily concerned with applying color isomorphism to bounded degree graph isomorphism, and have therefore focused o...
متن کاملLinear Diophantine Equations, Group CSPs, and Graph Isomorphism
In recent years, we have seen several approaches to the graph isomorphism problem based on “generic” mathematical programming or algebraic (Gröbner basis) techniques. For most of these, lower bounds have been established. In fact, it has been shown that the pairs of nonisomorphic CFI-graphs (introduced by Cai, Fürer, and Immerman in 1992 as hard examples for the combinatorial Weisfeiler-Leman a...
متن کاملAn Efficient Quantum Algorithm for Some Instances of the Group Isomorphism Problem
In this paper we consider the problem of testing whether two finite groups are isomorphic. Whereas the case where both groups are abelian is well understood and can be solved efficiently, very little is known about the complexity of isomorphism testing for nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of groups corresponding to one of the most natural w...
متن کاملPolynomial-time Isomorphism Test for Groups with Abelian Sylow Towers
We consider the problem of testing isomorphism of groups of order n given by Cayley tables. The trivial nlogn bound on the time complexity for the general case has not been improved over the past four decades. Recently, Babai et al. (following Babai et al. in SODA 2011) presented a polynomial-time algorithm for groups without abelian normal subgroups, which suggests solvable groups as the hard ...
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 73 شماره
صفحات -
تاریخ انتشار 2007